Little Grothendieck’s theorem for real JB*-triples

نویسنده

  • Antonio M. Peralta
چکیده

We prove that given a real JB*-triple E, and a real Hilbert space H , then the set of those bounded linear operators T from E toH , such that there exists a norm one functionalφ ∈ E∗ and corresponding pre-Hilbertian semi-norm ‖.‖φ on E such that ‖T (x)‖ ≤ 4 √ 2‖T‖ ‖x‖φ for all x ∈ E, is norm dense in the set of all bounded linear operators from E toH . As a tool for the above result, we show that ifA is a JB-algebra and T : A → H is a bounded linear operator then there exists a state φ ∈ A∗ such that ‖T (x)‖ ≤ 2 √ 2‖T‖φ(x2) for all x ∈ A. Mathematics Subject Classification (2000): 17C65, 46K70, 46L05, 46L10, 46L70

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subdifferentiability of the norm and the Banach-Stone Theorem for real and complex JB∗-triples

We study the points of strong subdifferentiability for the norm of a real JB∗-triple. As a consequence we describe weakly compact real JB∗-triples and rediscover the Banach-Stone Theorem for complex JB∗-triples.

متن کامل

On summing operators on JB * - triples

In this paper we introduce 2-JB*-triple-summing operators on real and complex JB*-triples. These operators generalize 2-C*-summing operators on C*-algebras. We also obtain a Pietsch’s factorization theorem in the setting of 2-JB*-triple-summing operators on JB*-triples.

متن کامل

Grothendieck's Inequalities for Real and Complex Jbw*-triples

This paper relies on the important works of T. Barton and Y. Friedman [3] and C.-H. Chu, B. Iochum and G. Loupias [8] on the generalization of `Grothendieck's inequalities' to complex JB -triples. Of course, the Barton±Friedman±Chu± Iochum±Loupias techniques are strongly related to those of A. Grothendieck [15], G. Pisier (see [27, 28, 29]), and U. Haagerup [16], leading to the classical `Groth...

متن کامل

Atomic Decomposition of Real Jbw*-triples

We study the natural partial ordering in the set of all tripotents of a real JB∗-triple. We prove some characterizations of real-minimal tripotents and an atomic deocmpostion theorem for real JBW∗-triples is given.

متن کامل

A Saitô–tomita–lusin Theorem for Jb∗-triples and Applications

A theorem of Lusin is proved in the non-ordered context of JB∗-triples. This is applied to obtain versions of a general transitivity theorem and to deduce refinements of facial structure in closed unit ballls of JB∗-triples and duals.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999